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1. Introduction 
 Increasing atmospheric concentrations of CO2 and other greenhouse gases is a global 
concern.  Agricultural activities contribute to CO2 and N2O emissions through combustion of 
fossil fuels, soil organic carbon (SOC) decomposition, and biomass burning.  Although green 
plants convert CO2 into carbohydrates and biomass, most of the CO2 that green plants absorb 
reenters the atmosphere through respiration of plants and animals and through microbial 
decomposition.   
 Depending on land use and management, soil can function as either a source or sink 
for atmospheric CO2.  Based on the large decreases in soil organic carbon when native forests 
and grasslands were converted to agriculture, the potential for C sequestration in soils is very 
large (Lal et al., 1999).  Carbon can be stored in the soil in either living organisms or in their 
residues in a form which resists further biological degradation. Models can predict net carbon 
sequestration for different soil types and land management. 
 Numerous models of C dynamics have been published and range from complex 
research-oriented models to simple empirical applications-oriented models (Ma and Shaffer, 
2001).  The complex research models emphasize the underlying biological, chemical, and 
physical processes that control C flows, but tend to be point-based because of their detailed 
input data requirements.  The simple empirical models correlate ecosystem-scale processes 
with parameter that are readily measured in the field and, as a result, may gloss over some 
important functional relationships.  
 The linkage of process models to geographic information systems (GIS) for spatially 
distributed fields or watersheds has blurred the spatial scale distinction between research and 
application models.  Lack of data to support these process models across a wide range of soil 
and land management scenarios continues to be a major issue limiting their usability.  Robust 
approaches for extending C models from local to regional and global scales have not been 
identified and evaluated.  Recent advances in remote sensing of vegetation and soils can 
potentially provide some of the biophysical parameters needed by various C models to predict 
C dynamics across landscapes. 
 In this paper, we briefly 1) review current status for remote sensing of crops and soils, 
and 2) examine the potential role of remote sensing for assessing C dynamics in agriculture. 
 
2. Remote sensing of crop production 
 When solar radiation interacts with matter, it may be reflected, transmitted, or 
absorbed. The spectral reflectance of crop canopies is determined by 1) leaf spectral 
properties, 2) leaf area index (LAI) and canopy geometry, 3) background (soil or residue) 
reflectance, 4) illumination and view angles, and 5) atmospheric transmittance (Bauer, 1985). 
When vegetation density is low, background reflectance significantly influences canopy 
reflectance. When vegetation density is high, leaves are the primary scattering elements and 
the background contributes little to overall canopy reflectance.   
 The spectral properties of leaves are determined by the concentration of chlorophyll 
 



 

and other pigments in the visible (400-700 nm) wavelength region, by mesophyll structure in 
the near infrared (700-1200 nm) region, and by amount of water in the middle infrared (1200-
2400 nm) region (Knipling, 1970).  As leaves expand, mature, and senesce, physiological and 
morphological changes occur that effect their spectral properties. Various stresses, including 
nutrient deficiencies, water deficits, and damage by insects and diseases, also affect the 
optical properties of leaves (Walter-Shea and Biehl, 1990). 
 Crop identification and area estimation were major thrusts of U. S. agricultural remote 
sensing programs such as the Corn Blight Watch Experiment (MacDonald et al., 1972), and 
the Large Area Crop Inventory Experiment (LACIE; MacDonald and Hall, 1980).  These 
programs firmly established the feasibility of using multispectral scanner data and digital 
analysis techniques to identify and estimate the areal extent of crops.  These programs also 
recognized the importance of multi-temporal remotely sensed data for consistent, accurate 
crop identification.  
 The crop is the ultimate integrator of its environment and the spectral appearance of 
the crop contains useful information on its condition and potential yield.  Although spectral 
reflectance has been directly related to biomass, LAI, and yield of crops, the relationships are 
seldom robust.  Temporal changes in spectral reflectance, particularly the normalized 
difference vegetation index (NDVI), have been related to absorbed photosynthetically-active 
radiation (APAR; Asrar et al., 1989), to net primary production (Prince, 1991), and to grain 
yields (Gallo et al., 1985).  
 Crop models that simulate biophysical processes in the soil-plant-atmosphere system 
can provide nearly continuous (i.e., hourly, daily) descriptions of crop growth and 
development.  Ideally, a system for assessing crop condition and yield would combine the 
superior temporal resolution of the physiological crop models with the superior spatial 
resolution of remotely sensed data. 
 Two distinct approaches have been used to incorporate remotely sensed data into crop 
growth models.  In the first approach, crop biophysical characteristics are estimated using 
remotely sensed data and input directly into the growth model.  Typically, spectral estimates 
of the fraction of absorbed radiation or leaf area index (LAI) were incorporated into the 
growth models (Daughtry et al., 1983).  These relatively simple models are based on the 
assumption that biomass production is a function of the amount of radiation absorbed by the 
crop (Kumar and Monteith, 1981).  Environmental stresses that reduce biomass production 
may not be explicitly accounted for in these simple models. 
 In the second approach, a time series of remotely sensed measurements is used to 
calibrate the crop growth model.  For example, Maas (1988) periodically adjusted the LAI 
values simulated by crop growth model to match the LAI values estimated from the 
reflectance data.  One limitation of this approach is that the relationship between reflectance 
and LAI must be determined empirically for each location.  Alternatively, LAI may be 
estimated by inverting a radiative transfer model, such as  SAIL (Verhoef, 1984) and then 
incorporated into the crop model.  The inversion required remotely sensed data that had been 
radiometrically corrected for atmospheric transmittance plus estimates of leaf optical 
properties, canopy geometry, and background reflectance.  Using this approach, Doraiswamy 
et al. (2001) successfully simulated LAI for various crops using multi-temporal satellite data 
and then incorporated the simulated LAI in models to predict grain yields.   
 
 



 

3. Remote sensing of soil properties 
 The spectral reflectance of soils is determined by physical factors quite different from 
those of vegetation.  Soil reflectance generally increases with increasing wavelength. The 
relative contributions of moisture content, iron-oxide content, organic matter content, particle-
size distribution, mineralogy, and soil structure to reflectance of naturally occurring soils have 
been throughly reviewed (Baumgardner et al., 1985; Irons et al., 1989).  In perhaps the most 
comprehensive study of the reflectance of soil, Stoner and Baumgardner (1981) defined five 
general classes of soil reflectance spectra.  Organic matter content and iron oxide content 
were the primary factors determining shape of the reflectance spectra.  In general, soil 
reflectance increased as soil moisture, particle-size, surface roughness, organic matter content, 
and iron oxide content decreased.  Spectral reflectance is strongly correlated with soil organic 
matter among soils from the same parent materials; however, the relationship is sensitive to 
changes in iron and manganese oxides in soils form different parent materials (Henderson et 
al., 1992). 
 Remote sensing as aerial photography has been a tool in the mapping of soils.  The 
synoptic view of the soil in the landscape and the tonal variations in the photographs 
enhanced the delineation of soil boundaries and identification of inclusions within the 
predominant soil series.  Multispectral images have also been used to aid soil survey, soil 
inventory, and soil management (Baumgardner et al., 1985).   
 Important soil properties for crop growth related to water holding capacity and fertility 
can be indirectly estimated by remote sensing of vegetation (Walthall et al., 2001).  Spatial 
patterns in remotely sensed images and crop yield maps over several years have been 
analyzed to identify areas within fields with similar crop responses (Gish et al., 2002).  These 
homogenous zones may be used to guide soil sampling and form the basis for adjusting 
nutrient application rates using variable rate technology. 
 
4. Remote sensing of crop residues 
 Crop residues are the portions of a crop that is left in the field after harvest.  Shortly 
after harvest, crop residues are frequently much brighter than the soil, but as the residues 
weather and decompose they may be either brighter or darker than the soil (Nagler et al., 
2000).  The reflectance spectra of both soils and crop residue lack the unique spectral 
signature of green vegetation in the 400 to 1000 nm wavelength region (Aase and Tanaka, 
1991).  Crop residues and soils are often spectrally similar and differ only in amplitude at a 
given wavelength (Baird and Baret, 1997).  This makes discrimination between crop residues 
and soil difficult or nearly impossible using reflectance techniques in the visible and near 
infrared wavelengths.  
 One promising remote sensing approach for discriminating crop residues from soil is 
based on a broad absorption band near 2100 nm that appears in all compounds possessing 
alcoholic -OH groups, such as sugars, starch, and cellulose (Murray and Williams, 1988). 
This absorption feature was clearly evident in the reflectance spectra of the dry crop residues, 
but was absent in the spectra of the soils (Daughtry, 2001). The relative depth of this 
absorption feature using reflectance in three bands - two on the shoulders at 2021 and 2213 
nm and one at 2100 nm (absorption maximum) defined a cellulose absorption index (CAI).  
Moisture content, age of the residue, and degree of decomposition affected the spectral 
reflectance and CAI of crop residues (Nagler et al., 2000).  Water significantly altered the 
 



 

reflectance spectra of wet crop residues, but did not prevent the discrimination of crop 
residues from soils using CAI.  
 Crop residue cover is linearly related to CAI (Figure 1).  Less than 10% green 
vegetation cover in the scene had little effect on CAI, but as green vegetation cover in the 
scene increased, the errors for estimating crop residue cover using CAI increased.  Water in 
green vegetation attenuated the cellulose absorption feature near 2100 nm and reduced the 
CAI value in a similar manner that water reduced the CAI values of crop residues (Daughtry, 
2001).  Research is underway to evaluate both AVIRIS and Hyperion images for assessing 
crop residue cover using the CAI approach.    
 
5. Remote sensing of soil tillage  
 Tillage hastens carbon oxidation by increasing soil aeration and soil-residue contact 
and accelerates soil erosion by increasing exposure to wind and rain.  A large proportion of 
soil organic carbon content is concentrated near the soil surface and is highly vulnerable to 
oxidation and soil erosion.  Tillage practices strongly influence the fate of soil carbon. 
 Conservation tillage is any tillage and planting system that maintains at least 30% of 
the soil surface covered by residue after planting (CTIC, 2000).  Crop residue management is 
an integral part of any conservation tillage system and includes selecting crops that produce 
sufficient quantities of residues and sowing cover crops to provide an effective ground cover.  
Long-term use of conservation tillage can lead to increased SOC content, improved soil 
structure, and increased aggregation compared with plow-tilled soils (Rasmussen and Rohde, 
1988).  
 Efforts to identify tilled fields using changes in surface reflectance have had mixed 
success (e.g., Baird and Baret, 1997; van Deventer et al., 1997).  Although tillage frequently 
roughens the soil surface and decreases soil reflectance, the effect is short-lived and 
reflectance may increase as the soil surface is smoothed by rain or subsequent tillage.  
However, if tillage categories are defined by the amount of residue cover, it may be possible 
to use CAI identify tillage categories.  The conservation tillage has been defined as any tillage 
and planting system that has more than 30% residue cover after planting;  reduced-tillage 
as15-30% residue cover; and intensive or conventional tillage as less than 15% residue cover 
(CTIC, 2000).  The two dashed horizontal lines in Figure 2 divide the feature space into these 
three tillage categories and the vertical dashed line is related to green vegetation cover. The 
ability to identify tillage systems using remotely sensed images could be crucial input for 
assessing spatial variability of carbon dynamics across agricultural landscapes.  Regional 
surveys and maps of crop residue cover and conservation tillage practices may be feasible 
using hyperspectral imaging systems. 
 
6. Potential remote sensing inputs to C models  
 Remote sensing techniques can not directly monitor soil carbon dynamics; however, 
remote sensing can provide a number of crucial inputs to carbon models. Figure 3 shows the 
simplified, conceptual flow of organic carbon through various pools in a generic soil carbon 
model.  Briefly, the gross primary production of green plants is partitioned between above 
ground and below ground plant components.  After subtracting the respiratory costs, above- 
and below-ground net primary production (NPP) are determined.  For a typical annual crop, 
some fraction of the above-ground NPP is harvested yield and the remainder is left in the field 
 



 

as surface residue; all of the below-ground NPP becomes subsurface residue.  As both the 
surface and subsurface residue break down, labile carbon is absorbed into the active pool of 
soil organic matter (SOM), whereas structural carbon is transferred to the slow SOM pool.  
During turnover of the slow SOM pool, some SOM becomes recalcitrant and transferred to 
the passive SOM pool.  Net N mineralization results from the turnover of all three pools of 
SOM and the decomposition of surface and subsurface residues.  Fertile soils with high SOM 
generally have high net N mineralization, which in turn can either be taken up by plant roots 
to enhance gross primary production or leached from the soil system.  
 Direct inputs to soil carbon models, that can be determined by remote sensing 
imagery, are associated with above-ground NPP and include land use, crop type, crop 
phenology, LAI, and APAR.  Tillage practices and soil surface residues also may be 
determined directly by advanced (hyperspectral) remote sensing techniques.  Additional 
inputs may be derived indirectly by examining the feedback between soil fertility and gross 
primary production as a means for updating the SOM dynamics in the models.  The 
differences between expected soil fertility and crop growth will highlight specific areas in 
fields that need to be sampled and evaluated.  These inputs for soil carbon models, when 
implemented within a geographic information system (GIS), will provide important boundary 
conditions on the amount and dynamics of SOM across landscapes. 
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List of Figures 
 
Figure 1.  Fraction of crop residue cover as a function of cellulose absorption index (CAI) in 
corn fields after planting.  The fractions of green vegetation (fG) in the scenes are indicated by 
the symbol type.  
 
Figure 2.  Scatterplot of CAI and NDVI for scenes in a corn field after planting.  The 
horizontal dashed lines indicate 15% and 30% residue cover. Conservation tillage is defined 
as having more than 30% residue cover after planting; reduced-tillage has 15-30% residue 
cover; and intensive or conventional tillage has less than 15% residue cover. 
 
Figure 3.  Conceptual flow of organic carbon through various pools of a generic carbon 
model.  Remote sensing technology can provide site-specific information for agricultural 
fields for implementing carbon models across landscapes. 
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Figure 2.  Scatterplot of CAI and NDVI for scenes in a corn field after planting.  The 
horizontal dashed lines indicate 15% and 30% residue cover. Conservation tillage is defined 
as having more than 30% residue cover after planting; reduced-tillage has 15-30% residue 
cover; and intensive or conventional tillage has less than 15% residue cover. 
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Figure 3.  Conceptual flow of organic carbon through various pools of a generic carbon 
model.  Remote sensing technology can provide site-specific information for agricultural 
fields for implementing carbon models across landscapes. 


